Quiz 7: 15.1-15.3

Show all work clearly. Any time a substitution is made in an integral, or integration by parts is used, you must state what substitution you are using.

1) Evaluate the double integral $\int_{1}^{3} \int_{1}^{5} \frac{\ln y}{x y} d y d x$

$$
\begin{aligned}
\int_{1}^{3} \int_{1}^{5} \frac{\ln y}{x y} d y d x & =\int_{1}^{3} \frac{1}{x} \int_{1}^{5} \frac{\ln y}{y} d y d x \quad \begin{array}{l}
u=\ln y \quad \int_{1}^{5} \ln y \\
y \\
\end{array} \\
& =\int_{1}^{3} \frac{1}{x} \frac{1}{y} d y=\int_{0}^{\ln 5} u d u \\
& =\frac{1}{2}(\ln 5)^{2} d x \\
& \left.=\frac{1}{2} u^{2}\right]^{2}(\ln 5)^{2} \int_{1}^{3} \frac{1}{x} d x \\
& (\ln 5)^{2} \ln (x]_{1}^{3}=\frac{1}{2}(\ln 5)^{2} \ln 3
\end{aligned}
$$

(2) Set up iterated integrals in both orders for $\iint_{D} f(x, y) d A$, where D is the region bound by $y=x^{2} ; y=3 x$. (write your limits on the given integrals). (4 points)

$\int_{0}^{9} \int^{\sqrt{y}} f(x, y) d x d y$
0
$\frac{1}{3} y$
(3) Find the volume of the solid under the surface $f(x, y)=1+x y$ and above the region in the D in the ry plane shown, using the following instructions. (10 points)
(a) Set up only: a double integral in the order dydx

$$
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}}(1+x y) d y d x
$$

(b) Set up only a double integral in the order dxdy

$$
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}}(1+x y) d x d y
$$

(c) Set up only in polar coordinates.

$$
\int_{0}^{\pi / 2} \int_{0}^{2}\left(1+r^{2} \cos \theta \sin \theta\right) r d r d \theta
$$

(d) Evaluate one of the above

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \int_{0}^{2}\left(r+r^{3}(\cos \theta \sin \theta)\right) d r d \theta \\
& \left.\int_{0}^{\pi / 2} \frac{1}{2} r^{2}+\frac{1}{4} r^{4} \cos \theta \sin \theta\right]_{0}^{2} d \theta \\
& \int_{0}^{\pi / 2}(\alpha+4 \cos \theta \sin \theta) d \theta \\
& \int_{0}^{\pi / 2} 2 d \theta+\int_{0}^{\pi / 2} 4 \cos \theta \sin \phi d \theta \\
& \left.2 \cdot \frac{\pi}{2}+2 \sin ^{2} 0\right]_{0}^{\pi / 2} \\
& \pi+2 \\
& u=\sin \theta \\
& d u=\cos \theta d r \\
& \int \cos \theta \sin \theta d \theta \\
& -\int u d u=\frac{1}{2} u^{2}+c \\
& =\frac{1}{2} \sin ^{2} \theta+c
\end{aligned}
$$

